Modulbeschreibung

Machine Learning and Data Science (EEU)

ECTS-Credits:
4
Lernziele:

The students learn

  • the fundamentals of Machine Learning (ML) for data analysis
  • data analysis and data processing in Python
  • the application of Machine Learning problems in energy and environmental technology.
  • to view the learning problem as an optimization process, to solve it, and to evaluate the quality of the results
  • to solve technical problems in mixed teams using ML-based data analysis 

Kurse in diesem Modul

Machine Learning and Data Science:
  • (Note: not in chronological order)

    • Introduction to data analysis with Python
    • Review of probability (joint, marginal, and conditional probability; Baye's rule; probability density, ...)
    • Review of linear algebra (matrices and vectors, eigen-values and -vectors, factorization, ...)
    • Fundamentals of ML-base data analysis
      • Formulation of the learning problem
    • Types of learning according to data availability and type
      • supervised learning: regression and classification
      • unsupervised learning: clustering and dimensionality reduction
      • reinforcement learning
      • semi-supervised learning
      • causal learning
    • Methods
      • Constrained and regularized optimization
      • Linear and non-linear regression
      • Gaussian processes and support vector machines
      • Neural networks
      • Kalman filter and reservoir computing (iterative learning)
      • Q-learning
      • K-means
      • PCA, ICA, and extensions (e.g. kernel PCA)
    • Applications in the fields of renewables and environmental technology
    • Other relevant topics
      • The relation between ML and AI
      • Interpolation, Extrapolation 
      • Filtering, smoothing, and forecasting
      • Model selection Overfiting and classes of functions
Vorlesung mit 2 Lektionen pro Woche
Uebung mit 2 Lektionen pro Woche
Disclaimer

Diese Beschreibung ist rechtlich nicht verbindlich! Weitere Informationen finden Sie in der detaillierten Modulbeschreibung.