Modulbeschreibung

Statistik

ECTS-Punkte:
4
Lernziele:

Die Studierenden sollen befähigt werden
• kleine statistische Anwendungsprobleme mit eigenen Daten selbst zu lösen
• bei größeren Problemen sinnvoll mit Statistiker/innen zusammen zu arbeiten
• die Statistik in anderen wissenschaftlichen Arbeiten (wenigstens in den Grundzügen) zu verstehen
• Missbräuche und Fehler leichter zu durchschauen und selbstständig zu beurteilen

Kurse in diesem Modul

Statistik:

Themen-/Lernblock: Deskriptive Statistik (Schwerpunkt)
1. Werkzeuge (Python) zbd Grundbegriffe (u.a. Merkmale, qualitativ/quantitativ, diskret/stetig)
2. Graphische Aufbereitung von Daten (u.a. Quantile, Stabdiagramm, Histogramm, empirische Verteilungsfunktion)
3. Lageparameter (u.a. Arithmetisches Mittel, Median, geometrisches Mittel)
4. Streuungsparameter (u.a. Quartilsabstand, empirische Varianz, Standardabweichung, Variationskoeffizient, Boxplot)
5. Zweidimensionale Häufigkeitsverteilung und Regression (u.a. Kovarianz, Randhäufigkeiten, Streudiagramm, Regression)
6. Funktionale Beschreibung von diskreten und stetigen Daten (u.a. Binomialverteilung, Gleichverteilung)

 

Themen-/Lernblock: Kombinatorik/Wahrscheinlichkeitsrechnung
• Kombinatorische Grundlagen (z.B. Fakultäten, Binomialkoeffizienten)
• Zufall, Ereignisalgebra (z.B. Zufallsexperiment, Elementarereignis, Ergebnisraum, Ereignis, Satz von Laplace)
• Unabhängige Ereignisse und bedingte Wahrscheinlichkeit (z.B. bedingte Wahrscheinlichkeit, Satz von Bayes)
• Zufällige Variable und Wahrscheinlichkeitsverteilung (z.B. Zufallsvariable, Realisationen, diskrete Zufallsvariable)
• Erwartungswert und Varianz einer Verteilung (z.B. Erwartungswert, unabhängige/abhängige Zufallsvariablen)

 

Themen-/Lernblock: Induktive Statistik
• Problemstellung, Zufallsstichproben (z.B. Grundgesamtheit und Zufallsstichprobe, Schätzprinzip)
• Punktschätzungen (z.B. Schätzfunktion/Schätzer, Stichprobenmittel, Stichprobenvarianz, Anteilssatz, Erwartungstreue)
• Intervallschätzungen (z.B. Konfidenzintervall für den Erwartungswert)
• Hypothesentests (z.B. Prinzip eines Hypothesentests, Signifikanzniveau, Fehler 1. und 2. Art, Ablehnungsbereich)

Vorlesung mit 2 Lektionen pro Woche
Uebung mit 2 Lektionen pro Woche
Disclaimer

Diese Beschreibung ist rechtlich nicht verbindlich! Weitere Informationen finden Sie in der detaillierten Modulbeschreibung.