Modulbeschreibung

Machine Learning and Data Science (EEU)

Kurzzeichen:
M_MLDS
Unterrichtssprache:
Englisch
ECTS-Credits:
4
Leitidee:

The students learn

  • the fundamentals of Machine Learning (ML) for data analysis
  • data analysis and data processing in Python
  • the application of Machine Learning problems in energy and environmental technology.
  • to view the learning problem as an optimization process, to solve it, and to evaluate the quality of the results
  • to solve technical problems in mixed teams using ML-based data analysis 
Modulverantwortung:
Prof. Dr. Nordborg Henrik
Standort (angeboten):
Rapperswil-Jona
Modultyp:
Wahlpflicht-Modul für Erneuerbare Energien und Umwelttechnik STD_21(Empfohlenes Semester: 5)Kategorie:Spezialkategorie: Grundlagen EEU, Vertiefung ET, Vertiefung UT, Mathematik, Naturwissenschaften (EEU-eeumn)
Wahlpflicht-Modul für Erneuerbare Energien und Umwelttechnik STD_24(Empfohlenes Semester: 5)Kategorie:Vertiefungsmodule EEU (EEU-VT)
Modulbewertung:
Note von 1 - 6

Leistungsnachweise und deren Gewichtung

Modulschlussprüfung:
Mündliche Prüfung, 30 Minuten
Während der Unterrichtsphase:

Seminararbeit

Bewertungsart:
Note von 1 - 6
Gewichtung:

Seminararbeit (50%), mündliche Prüfung (50%)

Bemerkungen:

Inhalte

Angestrebte Lernergebnisse (Abschlusskompetenzen):
  • know the different approaches to AI-based data analysis (e.g. supervised vs. unsupervised learning)
  • process and analyze data with Python
  • formulate adequate models for problems from EU and UT and train them on specific data sets
  • understand the training process as an optimization problem, solve it and evaluate the quality of the result qualitatively and quantitatively
  • solve technical problems in mixed teams using AI-based data analysis
Modul- und Lerninhalt:
  • (Note: not in chronological order)

    • Introduction to data analysis with Python
    • Review of probability (joint, marginal, and conditional probability; Baye's rule; probability density, ...)
    • Review of linear algebra (matrices and vectors, eigen-values and -vectors, factorization, ...)
    • Fundamentals of ML-base data analysis
      • Formulation of the learning problem
    • Types of learning according to data availability and type
      • supervised learning: regression and classification
      • unsupervised learning: clustering and dimensionality reduction
      • reinforcement learning
      • semi-supervised learning
      • causal learning
    • Methods
      • Constrained and regularized optimization
      • Linear and non-linear regression
      • Gaussian processes and support vector machines
      • Neural networks
      • Kalman filter and reservoir computing (iterative learning)
      • Q-learning
      • K-means
      • PCA, ICA, and extensions (e.g. kernel PCA)
    • Applications in the fields of renewables and environmental technology
    • Other relevant topics
      • The relation between ML and AI
      • Interpolation, Extrapolation 
      • Filtering, smoothing, and forecasting
      • Model selection Overfiting and classes of functions
Lehrmittel/-materialien:
  • Abu-Mostafa, Y. S., Magdon-Ismail, M., & Lin, H.-T. (2012). Learning From Data. AMLBook.
  • Bishop, C. M. (2016). Pattern Recognition and Machine Learning (Softcover reprint of the original 1st edition 2006 (corrected at 8th printing 2009)). Springer New York.  
  • Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press. http://www.gaussianprocess.org/gpml/chapters
  • Brunton, S. L., & Kutz, J. N. (2022). Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control (2nd ed.). Cambridge University Press. https://doi.org/10.1017/9781009089517
  • Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of causal inference: Foundations and learning algorithms. MIT Press.
  • Särkkä, S. (2013). Bayesian Filtering and Smoothing. Cambridge University Press. https://users.aalto.fi/~ssarkka/#books