Modulbeschreibung

Game Theory and Artificial Intelligence in Cyber Security

Kurzzeichen:
M_TuIT_EVA_1065
ECTS-Credits:
3
Leitidee:

Recent cyber and supply chain attacks on the Swiss federal administration and various Swiss companies have shown that cyber security is becoming increasingly important in daily life.
In cybersecurity, Game Theory can be used to begin understanding what a potential attacker may be attempting to do based on the payoffs for their actions. This better understanding can help to improve the decision-making of an organization when it comes to IT Security problems.
In addition, many logs are generated in computer networks. For example, every network packet that passes through a firewall is logged. This large number of log files is suitable for analysis using big data approaches and machine learning. By using machine learning, patterns in the network data can be found that may indicate attacks

 

The students….

  • will be able to didactically prepare and present the main tasks and challenges of cybersecurity, the concepts of game theory and their application in cybersecurity, the methods and frameworks of emulation of such systems for a broad audience of computer professionals.
  • learn the theory and application of hacking frameworks
  • understand the key concepts of GameTheory for Cybersecurity
  • understand the key concepts of Machine Learning for Cybersecurity
Modulverantwortung:
Würsch Christoph
Standort (angeboten):
Buchs
Modultyp:
Wahlpflicht-Modul für MSE Master of Science in Engineering BB STD_08 (BU)(Keine Semesterempfehlung)Kategorie:Fachliche Vertiefung (MSE-FachV)
Wahlpflicht-Modul für MSE Master of Science in Engineering BB STD_13 (BU)(Keine Semesterempfehlung)Kategorie:Fachliche Vertiefung (MSE-FachV)
Wahlpflicht-Modul für MSE Master of Science in Engineering BB STD_16 (BU)(Keine Semesterempfehlung)Kategorie:Fachliche Vertiefung (MSE-FachV)
Wahlpflicht-Modul für MSE Master of Science in Engineering VZ STD_08 (BU)(Keine Semesterempfehlung)Kategorie:Fachliche Vertiefung (MSE-FachV)
Wahlpflicht-Modul für MSE Master of Science in Engineering VZ STD_13 (BU)(Keine Semesterempfehlung)Kategorie:Fachliche Vertiefung (MSE-FachV)
Wahlpflicht-Modul für MSE Master of Science in Engineering VZ STD_16 (BU)(Keine Semesterempfehlung)Kategorie:Fachliche Vertiefung (MSE-FachV)
Wahlpflicht-Modul für Technik und IT MSE_20(Keine Semesterempfehlung)Kategorie:Fachliche Vertiefung (MSE-FachV)
Modulbewertung:
Note von 1 - 6

Leistungsnachweise und deren Gewichtung

Während der Unterrichtsphase:

Deliverable: Didactically successful introduction to "AI for Cybersecurity" in the form of 12 Lessons and a brief overview of the corresponding Lab without elaborating the Labs in detail.

Bewertungsart:
Note von 1 - 6
Gewichtung:

Deliverable: Didactically successful introduction to "AI for Cybersecurity" in the form of 12 Lessons and a brief overview of the corresponding Lab without elaborating the Labs in detail.

Bemerkungen:

Inhalte

Angestrebte Lernergebnisse (Abschlusskompetenzen):

The students….

  • will be able to didactically prepare and present the main tasks and challenges of cybersecurity, the concepts of game theory and their application in cybersecurity, the methods and frameworks of emulation of such systems for a broad audience of computer professionals.
  • learn the theory and application of hacking frameworks
  • understand the key concepts of GameTheory for Cybersecurity
  • understand the key concepts of Machine Learning for Cybersecurity
Modul- und Lerninhalt:
  • Fundamentals of Computer Networks
  • Fundamentals of Encryption
  • Basic knowledge of Cyber Security and hacking Frameworks
  • Understanding of Network Data Visualization
  • Introduction and application of Game Theory for Cyber Security Problems
  • Introduction and application of Machine Learning for Cyber Security