Spezialkategorie: Grundlagen EEU, Vertiefung ET, Vertiefung UT, Mathematik, Naturwissenschaften / 4 Punkte
Modulbewertung
Bewertungsart:
Note von 1 - 6
Leistungsbewertung
Während der Prüfungssession:
Mündliche Prüfung, 30 Minuten
Während des Semesters:
Seminararbeit
Bewertungsart:
Note von 1 - 6
Gewichtung:
Seminararbeit (50%), mündliche Prüfung (50%)
Bemerkungen:
Kurse in diesem Modul
Machine Learning and Data Science
Kürzel:
MLDS
Semester:
1
Lernziele:
know the different approaches to AI-based data analysis (e.g. supervised vs. unsupervised learning)
process and analyze data with Python
formulate adequate models for problems from EU and UT and train them on specific data sets
understand the training process as an optimization problem, solve it and evaluate the quality of the result qualitatively and quantitatively
solve technical problems in mixed teams using AI-based data analysis
Plan und Lerninhalt:
(Note: not in chronological order)
Introduction to data analysis with Python
Review of probability (joint, marginal, and conditional probability; Baye's rule; probability density, ...)
Review of linear algebra (matrices and vectors, eigen-values and -vectors, factorization, ...)
Fundamentals of ML-base data analysis
Formulation of the learning problem
Types of learning according to data availability and type
supervised learning: regression and classification
unsupervised learning: clustering and dimensionality reduction
reinforcement learning
semi-supervised learning
causal learning
Methods
Constrained and regularized optimization
Linear and non-linear regression
Gaussian processes and support vector machines
Neural networks
Kalman filter and reservoir computing (iterative learning)
Q-learning
K-means
PCA, ICA, and extensions (e.g. kernel PCA)
Applications in the fields of renewables and environmental technology
Other relevant topics
The relation between ML and AI
Interpolation, Extrapolation
Filtering, smoothing, and forecasting
Model selection Overfiting and classes of functions
Unterrichtssprache:
Englisch
Bibliographie:
Abu-Mostafa, Y. S., Magdon-Ismail, M., & Lin, H.-T. (2012). Learning From Data. AMLBook.
Bishop, C. M. (2016). Pattern Recognition and Machine Learning (Softcover reprint of the original 1st edition 2006 (corrected at 8th printing 2009)). Springer New York.
Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press. http://www.gaussianprocess.org/gpml/chapters
Brunton, S. L., & Kutz, J. N. (2022). Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control (2nd ed.). Cambridge University Press. https://doi.org/10.1017/9781009089517
Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of causal inference: Foundations and learning algorithms. MIT Press.
Särkkä, S. (2013). Bayesian Filtering and Smoothing. Cambridge University Press. https://users.aalto.fi/~ssarkka/#books